0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA novel ab initio methodology based on high-throughput simulations has permitted designing unique biselective organic structure-directing agents (OSDAs) that allow the efficient synthesis of CHA/AEI zeolite intergrowth materials with controlled phase compositions. Distinctive local crystallographic ordering of the CHA/AEI intergrowths was revealed at the nanoscale level using integrated differential phase contrast scanning transmission electron microscopy (iDPC STEM). These novel CHA/AEI materials have been tested for the selective catalytic reduction (SCR) of NOx, presenting an outstanding catalytic performance and hydrothermal stability, even surpassing the performance of the well-established commercial CHA-type catalyst. This methodology opens the possibility for synthetizing new zeolite intergrowths with more complex structures and unique catalytic properties.
Estefanía Bello‐Jurado, Daniel Schwalbe‐Koda, Mathias Nero, Cecilia Paris, Toni Uusimäki, Yuriy Román‐Leshkov, Avelino Avelino, Tom Willhammar, Rafael Gómez‐Bombarelli, Manuel Moliner (2022). Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structure‐Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx. Angewandte Chemie International Edition, 61(28), DOI: 10.1002/anie.202201837.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Angewandte Chemie International Edition
DOI
10.1002/anie.202201837
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access