RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Triboelectric Polymer with High Thermal Charge Stability for Harvesting Energy from 200 °C Flowing Air

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Triboelectric Polymer with High Thermal Charge Stability for Harvesting Energy from 200 °C Flowing Air

0 Datasets

0 Files

en
2021
Vol 31 (49)
Vol. 31
DOI: 10.1002/adfm.202106082

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Xinglin Tao
Shuyao Li
Yuxiang Shi
+6 more

Abstract

Abstract Due to the thermionic emission effect, the electron transferred to dielectric surface can be released into vacuum after the contact electrification (CE). Therefore, triboelectric nanogenerator (TENG) cannot maintain effective electrical output under high temperature conditions. In order to obtain high thermal charge stability, polyimide is modified with strong electron withdrawing groups like trifluoromethyl (CF 3 ) and sulfone group (SO 2 ) in backbone. The fluorinated polyimides (F‐PI) with a big band gap can provide a tribocharge density of 170 µC m −2 (4 times of common Kapton film) and become more negative than polytetrafluoroethylene in triboelectric series. In addition, BaTiO 3 nanoparticles are doped in F‐PI film for inducing deep traps and interfacial polarizations for CE, which can further enhance the charge density (200 µC m −2 ) and thermal charge stability. Finally, a flutter‐driven TENG (FD‐TENG) is designed based on this BaTiO 3 ‐doped F‐PI film to harvest wind energy and sense wind velocity. This FD‐TENG can maintain 32% of its output performance at 200 °C in comparison with room temperature, which is the highest thermal charge stability reported for triboelectric polymers. Therefore, this BaTiO 3 ‐doped F‐PI has great application prospects for energy generation and motion detection in hot wind tunnel and many other harsh environments.

How to cite this publication

Xinglin Tao, Shuyao Li, Yuxiang Shi, Xingling Wang, Jingwen Tian, Zhaoqi Liu, Peng Yang, Xiangyu Chen, Zhong Lin Wang (2021). Triboelectric Polymer with High Thermal Charge Stability for Harvesting Energy from 200 °C Flowing Air. , 31(49), DOI: https://doi.org/10.1002/adfm.202106082.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adfm.202106082

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access