0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The triboelectric nanogenerator (TENG) as a new power-generation technology was reported by Wang and co-workers in 2012. Because of its great potential for scavenging mechanical energy from living environment and sustainably driving portable devices, many researchers have developed various methods to improve output performances of TENG. In this paper, we review the progress in TENG made as flexible power sources by integrating flexible materials and stretching structures, especially for the applications of flexible electronics. For optimizing performances of TENG, the structural designs, material selections, and hybrid energy cells are presented. The reported TENG as flexible power sources has the potential applications in lighting up light emitting diodes (LEDs), powering sensors, and monitoring biomechanical motions.
Yang Wang, Ya Yang, Zhong Lin Wang (2017). Triboelectric nanogenerators as flexible power sources. , 1(1), DOI: https://doi.org/10.1038/s41528-017-0007-8.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s41528-017-0007-8
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access