0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTriboelectric nanogenerator (TENG) has presented the huge potential application in distributed energy field which can realize the conversion from dispersed mechanical energy to electric energy. However, the natural characteristic of pulse output for conventional TENG, which means high crest factor, is defective for directly driving electronics. Here, a strategy to convert the pulse alternate current of TENG into a direct current with low crest factor is achieved through introducing a phase difference design into the structure of TENG. As a result, a direct current with a crest factor of 1.07 is obtained in a rotational free-standing TENG (RF-TENG) array at optimum phase difference, where 3D digital printing technology is used to accurately control the parameter of phase difference. Moreover, an adaptable contact mode structure between tribolayer and electrode improves the durability of the RF-TENG array, which can present a stable performance after working 1.2 million cycles. This work provides a combined strategy to obtain a long-lifetime and low crest-factor TENG for its large-scale application in energy harvesting.
Yuexiao Hu, Xinyuan Li, Zhihao Zhao, Chuguo Zhang, Linglin Zhou, Yanhong Li, Yuebo Liu, Jie Wang, Zhong Lin Wang (2021). Triboelectric Nanogenerator with Low Crest Factor via Precise Phase Difference Design Realized by 3D Printing. , 5(12), DOI: https://doi.org/10.1002/smtd.202100936.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/smtd.202100936
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access