RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu

0 Datasets

0 Files

en
2022
Vol 14 (3)
Vol. 14
DOI: 10.1021/acsami.1c23155

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Jiayu Li
Zhiwei Zhang
Xiongxin Luo
+2 more

Abstract

The related studies and applications of ZnS-based phosphorescent materials involve various aspects such as lighting, display, sensing, electronic signatures, and confidential information. Here, triboelectrification-induced electroluminescence (TIEL) of the ZnS:Cu due to the triboelectric leakage field is discovered via a gently horizontal sliding between a ZnS:Cu particle-doped polydimethylsiloxane (PDMS) film and a polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) film, whose intensity is positively correlated with the temperature, the doping ratio of ZnS:Cu, the pressure, and the frequency. It is also demonstrated that the TIEL mainly occurs inside the bulk film, where the ZnS:Cu phosphor particles can be polarized instantaneously by the leakage electric field of triboelectrification. The polarization will lead to a tilted energy band of the ZnS, resulting in an emitting of green light due to electrons detrapped into the conduction band and recombined with holes in the impurity state. This study not only reveals great fundamental physics for understanding of luminescence induced by a simple sliding between two triboelectric materials but also indicates another way for triboelectrification to be used in advanced optoelectronic devices.

How to cite this publication

Jiayu Li, Zhiwei Zhang, Xiongxin Luo, Laipan Zhu, Zhong Lin Wang (2022). Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu. , 14(3), DOI: https://doi.org/10.1021/acsami.1c23155.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsami.1c23155

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access