0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPlant interactions and feedbacks with soil microorganisms play an important role in sustaining the functions and stability of terrestrial ecosystems, yet the effects of tree species diversity on soil microbial community in forest ecosystems are still not well understood. Here, we examined the effects of tree species richness (1–12 species) and the presence of certain influential tree species (sampling effect) on soil bacterial and fungal communities in Chinese subtropical forests, using high-throughput Illumina sequencing for microbial identification. We observed that beta rather than alpha diversities of tree species and soil microorganisms were strong coupled. Multivariate regression and redundancy analyses revealed that the effects of tree species identity dominated over tree species richness on the diversity and composition of bacterial and fungal communities in both organic and top mineral soil horizons. Soil pH, nutrients and topography were always identified as significant predictors in the best multivariate models. Tree species have stronger effect on fungi than bacteria in organic soil, and on ectomycorrhizal fungi than saprotrophic fungi in mineral topsoil. Concluding, tree species identity, along with abiotic soil and topographical conditions, were more important factors determining the soil microbial communities in subtropical forests than tree diversity per se.
Liang Chen, Wenhua Xiang, Huili Wu, Shuai Ouyang, Bo Zhou, Yelin Zeng, Yongliang Chen, Yakov Kuzyakov (2018). Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biology and Biochemistry, 130, pp. 113-121, DOI: 10.1016/j.soilbio.2018.12.008.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2018.12.008
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access