RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Translocation, enzymatic reduction and toxicity of dimethylarsenate in rice

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Translocation, enzymatic reduction and toxicity of dimethylarsenate in rice

0 Datasets

0 Files

English
2024
Plant Physiology and Biochemistry
Vol 207
DOI: 10.1016/j.plaphy.2024.108393

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Fang-jie Zhao
Fang-jie Zhao

Nanjing Agricultural University

Verified
Yijie Wang
Chun-Yan Dong
Zhong Tang
+1 more

Abstract

Dimethylarsenate [DMAs(V)] can be produced by some soil microorganisms through methylation of inorganic arsenic (As), especially in anoxic paddy soils. DMAs(V) is more phytotoxic than inorganic As and can cause the physiological disorder straighthead disease in rice. Rice cultivars vary widely in the resistance to DMAs(V), but the mechanism remains elusive. Here, we investigated the differences in DMAs(V) uptake, translocation, and reduction to dimethylarsenite [DMAs(III)], as well as the effects on the metabolome, between two rice cultivars Mars and Zhe733. We found that Mars was 11-times more resistant to DMAs(V) than Zhe733. Mars accumulated more DMAs(V) in the roots, whereas Zhe733 translocated more DMAs(V) to the shoots and reduced more DMAs(V) to DMAs(III). DMAs(III) was more toxic than DMAs(V). Using heterologous expression and in vitro enzyme assays, we showed that the glutathione-S-transferases OsGSTU17 and OsGSTU50 were able to reduce DMAs(V) to DMAs(III). The expression levels of OsGSTU17 and OsGSTU50 were higher in the shoot of Zhe733 compared to Mars. Metabolomic analysis in rice shoots showed that glutathione (GSH) metabolism was perturbed by DMAs(V) toxicity in Zhe733. Application of exogenous GSH significantly alleviated the toxicity of DMAs(V) in Zhe733. Taken together, the results suggest that Mars is more resistant to DMAs(V) than Zhe733 because of a lower root-to-shoot translocation and a smaller capacity to reduce DMAs(V) to DMAs(III).

How to cite this publication

Yijie Wang, Chun-Yan Dong, Zhong Tang, Fang-jie Zhao (2024). Translocation, enzymatic reduction and toxicity of dimethylarsenate in rice. Plant Physiology and Biochemistry, 207, pp. 108393-108393, DOI: 10.1016/j.plaphy.2024.108393.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Plant Physiology and Biochemistry

DOI

10.1016/j.plaphy.2024.108393

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access