0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGlacial Lake Outburst Floods (GLOFs) can generate catastrophic flash floods when the damming structure is breached or overtopped. Some of these glacial lakes are located in transboundary regions where floods originating from the lake in one country could inundate a neighboring country, devastating the population and infrastructure of both nations and influencing socio-political relationships. Therefore, assessing the lakes' hazard is crucial. This study investigates transboundary glacial lakes, considering their GLOF hazard, including potential mass movement intrusion, moraine's stability, upstream and downstream process cascades, downstream flood extents, and the exposure and vulnerability of the downstream infrastructure and affected population. GLOF exposure assessments were carried out to identify exposed buildings, bridges, and hydropower systems in transboundary regions. China currently has the highest number of transboundary lakes, with most of them potentially impacting India and Nepal. Most of the transboundary lakes in China, and many in India and Nepal, are susceptible to mass movements. Among the 230 transboundary glacial lakes in the Hindu Kush Karakoram Himalaya, 55 lakes can potentially impact other glacial lakes along their flow path, creating a cascade of events. Five transboundary lakes could potentially impact over 1000 buildings, and 16 lakes could impact over 500 buildings. A total of 35 lakes can impact at least one hydropower station along their flow path, and 4 lakes can impact two hydropower stations. This research emphasizes the critical importance of conducting comprehensive risk analyses of GLOFs in transboundary regions to inform policy-makers. It calls for investing in broad-scale assessments and data-driven decision-making for mitigating and adapting to GLOF risks effectively. Finally, by raising awareness among policy-makers, the study aims to drive actions that safeguard communities and infrastructure vulnerable to GLOF.
Saket Dubey, Ashim Sattar, Vivek Gupta, Manish Kumar Goyal, Umesh K. Haritashya, Jeffrey S. Kargel (2024). Transboundary hazard and downstream impact of glacial lakes in Hindu-Kush Karakoram Himalayas. The Science of The Total Environment, 914, pp. 169758-169758, DOI: 10.1016/j.scitotenv.2023.169758.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2023.169758
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access