0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDepending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids.
Allan Sauvat, Guo Chen, Kévin Müller, Mingming Tong, Fanny Aprahamian, Sylvère Durand, Giulia Cerrato, Lucillia Bezu, Marion Leduc, Joakim Franz, Patrick Rockenfeller, Junichi Sadoshima, Frank Madeo, Oliver Kepp, Guido Guido Kroemer (2018). Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids. , 30, DOI: https://doi.org/10.1016/j.ebiom.2018.03.028.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.ebiom.2018.03.028
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access