0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper considers an unmanned aerial vehicle (UAV)-assisted communication system for data collection in urban areas, where multiple UAVs are dispatched to harvest data from multiple ground user equipments (UEs). We adopt a blockage-aware channel model to characterize the practical blockage effects for air-to-ground (A2G) links caused by buildings. Aiming to minimize the mission completion time while satisfying the data collection requirements of UEs, we formulate a problem by jointly optimizing the UAV three-dimensional (3-D) trajectory and resource allocation, including the UE scheduling and subcarrier assignment. To solve the formulated non-convex combinatorial programming problem, we propose a suboptimal algorithm that solves two subproblems iteratively. Specifically, in each iteration, the trajectory design subproblem jointly optimizes the UAVs' waypoints and time slot length to decrease the mission completion time, which is solved by employing block successive convex approximation (BSCA). For the resource allocation subproblem, we develop a heuristic algorithm for UE scheduling and subcarrier assignment to increase the collected data volume for a given time duration. Simulation results demonstrate the superior performance of the proposed algorithm in terms of mission completion time compared to benchmark schemes.
Pengfei Yi, Lipeng Zhu, Zhenyu Xiao, Rui Zhang, Zhu Han, Xiang‐Gen Xia (2023). Trajectory Design and Resource Allocation for Multi-UAV Communications Under Blockage-Aware Channel Model. IEEE Transactions on Communications, 72(4), pp. 2324-2338, DOI: 10.1109/tcomm.2023.3339502.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Communications
DOI
10.1109/tcomm.2023.3339502
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access