0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSulphur-containing amino acids (i.e. Cysteine (Cys) and methionine (Met)) constitute an important proportion of the soil organic sulphur. However, detailed information regarding the microbial transformation of Cys and Met at a molecular level remain poorly characterized. To trace the fate of carbon (C) and sulphur (S) derived from Cys and Met in an agricultural grassland soil, a14C and 35S dual-isotopic labelling approach was adopted. We also investigated whether their mineralization was affected by manipulating C (added as glucose), nitrogen (N), phosphorus (P) and S (added as NH4NO3, KH2PO4 and K2SO4) availability in soil solution. Our results showed that over a 7-day incubation period, 67.2–89.2% of the 14C derived from Cys and Met was respired as 14CO2, 2.7–19.5% had been immobilized in the soil microbial biomass; while the recovery of 35S in soil solution ranged from 6.4 to 9.9%, with the reminder retained in the soil microbial biomass. Overall, our results indicated that soil microbial communities possess a high capacity to utilize Cys and Met. Furthermore, using the 14C and 35S dual-labelling technique, we found that C and S derived from Cys and Met were microbially mineralized and immobilized at different rates, indicating that the cycles of these two elements were temporally decoupled at the molecular level. The addition of glucose-C increased 14CO2 respiration from Cys and Met after 7 d, while in comparison inorganic N, P and S addition had less effect on 14C and 35S partitioning.
Deying Wang, David R. Chadwick, Paul W. Hill, Tida Ge, Davey L Jones (2022). Tracing the mineralization rates of C, N and S from cysteine and methionine in a grassland soil: A 14C and 35S dual-labelling study. Soil Biology and Biochemistry, 177, pp. 108906-108906, DOI: 10.1016/j.soilbio.2022.108906.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2022.108906
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access