RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Tracing microplastics in aquatic environments based on sediment analogies

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Tracing microplastics in aquatic environments based on sediment analogies

0 Datasets

0 Files

English
2019
Scientific Reports
Vol 9 (1)
DOI: 10.1038/s41598-019-50508-2

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peter Feldens
Peter Feldens

Institution not specified

Verified
Kristina Enders
Andrea Käppler
Oliver Biniasch
+8 more

Abstract

Microplastics (MP) data collection from the aquatic environment is a challenging endeavour that sets apparent limitations to regional and global MP quantification. Expensive data collection causes small sample sizes and oftentimes existing data sets are compared without accounting for natural variability due to hydrodynamic processes governing the distribution of particles. In Warnow estuarine sediments (Germany) we found significant correlations between high-density polymer size fractions (≥500 mm) and sediment grain size. Among potential predictor variables (source and environmental terms) sediment grain size was the critical proxy for MP abundance. The MP sediment relationship can be explained by the force necessary to start particle transport: at the same level of fluid motion, transported sediment grains and MP particles are offset in size by one to two orders of magnitude. Determining grain-size corrected MP abundances by fractionated granulometric normalisation is recommended as a basis for future MP projections and identification of sinks and sources.

How to cite this publication

Kristina Enders, Andrea Käppler, Oliver Biniasch, Peter Feldens, Nicole Stollberg, Xaver Lange, Dieter Fischer, Klaus‐Jochen Eichhorn, Falk Pollehne, Sonja Oberbeckmann, Matthias Labrenz (2019). Tracing microplastics in aquatic environments based on sediment analogies. Scientific Reports, 9(1), DOI: 10.1038/s41598-019-50508-2.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Scientific Reports

DOI

10.1038/s41598-019-50508-2

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access