0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCarbon dioxide functionalization attracts much interest due to the current environmental and energy challenges. Our earlier work (Mondal, B.; Neese, F.; Ye, S. Inorg. Chem. 2015, 54, 7192–7198) demonstrated that CO2 hydrogenation mediated by base metal catalysts [M(H)(η2-H2)(PP3Ph)]n+ (M = Co(III) and Fe(II), n = 1, 2; PP3Ph = tris(2-(diphenylphosphino)phenyl)phosphine) features discrete rate-determining steps (RDSs). Specifically, the reaction with [CoIII(H)(η2-H2)(PP3Ph)]2+ passes through a hydride-transfer RDS, whereas the conversion with [FeII(H)(η2-H2)(PP3Ph)]+ traverses a H2-splitting RDS. More importantly, we found that the nature and barrier of the RDS likely correlate with the hydride affinity or hydricity of the dihydride intermediate [M(H)2(PP3Ph)](n−1)+ generated by H2-splitting. In the present contribution, following this notion we design a series of potential Fe(II) and Co(III) catalysts, for which the respective dihydride species possess differential hydricities, and computationally investigated their reactivity toward CO2 hydrogenation. Our results reveal that lowering the hydrictiy of [CoIII(H)2(PP3Ph)]+ by introducing anionic anchors in PP3Ph dramatically decreases the hydride-transfer RDS barrier, as shown for the enhanced reactivity of [Co(H)(η2-H2)(CP3Ph)]+ and [Co(H)(η2-H2)(SiP3Ph)]+ (CP3Ph = tris(2-(diphenylphosphino)phenyl)methyl, SiP3Ph = tris(2-(diphenylphosphino)phenyl)silyl), while the same ligand modification increases the H2-splitting RDS barriers for [Fe(H)(η2-H2)(CP3Ph)] and [Fe(H)(η2-H2)(SiP3Ph)] relative to that for [Fe(H)(η2-H2)(PP3Ph)]+. Conversely, upon increasing the hydricity of [FeII(H)2(PP3Ph)] by adding an electron-withdrawing group to PP3Ph, the transformation with [Fe(H)(η2-H2)(PP3PhNO2)]+ (PP3PhNO2 = tris(2-(diphenylphosphino)-4-nitrophenyl)phosphine) is predicted to encounter a lower barrier for H2-splitting and a higher barrier for hydride transfer than those for [Fe(H)(η2-H2)(PP3Ph)]+. Thus, we have shown that hydricity can be used as a guide to direct the rational design and development of more efficient catalysts.
Bhaskar Mondal, Frank Neese, Shengfa Ye (2016). Toward Rational Design of 3d Transition Metal Catalysts for CO<sub>2</sub> Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps. Inorganic Chemistry, 55(11), pp. 5438-5444, DOI: 10.1021/acs.inorgchem.6b00471.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Inorganic Chemistry
DOI
10.1021/acs.inorgchem.6b00471
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access