0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe report a quantitative analysis of the symmetry reduction phenomenon involved in the seed-mediated growth of Pd nanocrystals under dropwise addition of a precursor solution. In addition to the elimination of self-nucleation, the dropwise approach allows for the formation of a steady state for the number of precursor ions in the growth solution, which only fluctuates in a narrow range defined by experimental parameters such as the initial concentration of precursor solution and the injection rate. We can deterministically control the growth mode (symmetric vs asymmetric) of a seed by tuning these parameters to quantitatively manipulate the reaction kinetics and thus the lower and upper limits that define the steady state. We demonstrate that there exists a correlation between the growth mode and the lower limit of precursor ions in the steady state of a seed-mediated growth process. For the first few drops of precursor solution, the resultant atoms will only be deposited on a limited number of available sites on the seed if the lower limit of the steady state is below a critical value. Afterward, the deposition of atoms will be largely confined to these initially activated sites to induce symmetry reduction if atom deposition is kept at a faster rate than surface diffusion by controlling the lower limit of precursor ions in the steady state. Otherwise, the migration of atoms to other regions through surface diffusion can access other sites on the surface of a seed and thus lead to the switch of growth mode from asymmetric to symmetric. Our study suggests that symmetry reduction can only be initiated and retained by keeping the atom deposition at a rate slow enough to limit the number of initial nucleation sites on a seed but fast enough to beat the surface diffusion process.
Hsin‐Chieh Peng, Jinho Park, Lei Zhang, Younan Xia (2015). Toward a Quantitative Understanding of Symmetry Reduction Involved in the Seed-Mediated Growth of Pd Nanocrystals. , 137(20), DOI: https://doi.org/10.1021/jacs.5b03040.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.5b03040
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access