RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Throughput Maximization for the Gaussian Relay Channel with Energy Harvesting Constraints

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2012

Throughput Maximization for the Gaussian Relay Channel with Energy Harvesting Constraints

0 Datasets

0 Files

English
2012
IEEE Journal on Selected Areas in Communications
Vol 31 (8)
DOI: 10.1109/jsac.2013.130811

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Chuan Huang
Rui Zhang
Shuguang Cui

Abstract

This paper considers the use of energy harvesters, instead of conventional time-invariant energy sources, in wireless cooperative communication. For the purpose of exposition, we study the classic three-node Gaussian relay channel with decode-and-forward (DF) relaying, in which the source and relay nodes transmit with power drawn from energy-harvesting (EH) sources. Assuming a deterministic EH model under which the energy arrival time and the harvested amount are known prior to transmission, the throughput maximization problem over a finite horizon of $N$ transmission blocks is investigated. In particular, two types of data traffic with different delay constraints are considered: delay-constrained (DC) traffic (for which only one-block decoding delay is allowed at the destination) and no-delay-constrained (NDC) traffic (for which arbitrary decoding delay up to $N$ blocks is allowed). For the DC case, we show that the joint source and relay power allocation over time is necessary to achieve the maximum throughput, and propose an efficient algorithm to compute the optimal power profiles. For the NDC case, although the throughput maximization problem is non-convex, we prove the optimality of a separation principle for the source and relay power allocation problems, based upon which a two-stage power allocation algorithm is developed to obtain the optimal source and relay power profiles separately. Furthermore, we compare the DC and NDC cases, and obtain the sufficient and necessary conditions under which the NDC case performs strictly better than the DC case. It is shown that NDC transmission is able to exploit a new form of diversity arising from the independent source and relay energy availability over time in cooperative communication, termed "energy diversity", even with time-invariant channels.

How to cite this publication

Chuan Huang, Rui Zhang, Shuguang Cui (2012). Throughput Maximization for the Gaussian Relay Channel with Energy Harvesting Constraints. IEEE Journal on Selected Areas in Communications, 31(8), pp. 1469-1479, DOI: 10.1109/jsac.2013.130811.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2012

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

IEEE Journal on Selected Areas in Communications

DOI

10.1109/jsac.2013.130811

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access