0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEnergy harvesting from mechanical motions has immense applications such as self-powered sensors and renewable energy sources powered by ocean waves. In this context, the triboelectric nanogenerator is the cutting-edge technology that can effectively convert ambient mechanical energy into electricity through the Maxwell's displacement current. While further improvements of the energy conversion efficiency of triboelectric nanogenerators critically depend on theoretical modeling of the energy conversion process, to date only models based on single-relative-motion processes have been explored. Here, we analyze energy harvesting of triboelectric nanogenerators using a three-dimensional model in a linear-sliding mode and demonstrate a design of triboelectric nanogenerators that have a 77.5% enhancement in the average power in comparison with previous approaches. Moreover, our model shows the existence of a DC-like bias voltage contained in the basic AC output from the energy conversion, which makes the triboelectric nanogenerators an energy source more pliable than the traditional AC power generation systems. The present work provides a framework for systematic modeling of triboelectric nanogenerators and reveals the importance of obtaining direct analytical insight in understanding the current output characteristics of the triboelectric nanogenerators. Incorporating our model analysis in future designs of triboelectric nanogenerators is beneficial for increasing the energy conversion power and may provide insights that can be used in engineering the profile of the output current of the nanogenerators.
Jiajia Shao, Di Liu, Morten Willatzen, Zhong Lin Wang (2020). Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. , 7(1), DOI: https://doi.org/10.1063/1.5133023.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1063/1.5133023
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access