RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film

0 Datasets

0 Files

en
2018
Vol 8 (13)
Vol. 8
DOI: 10.1002/aenm.201702481

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Kang Liu
Tianpeng Ding
Jia Li
+6 more

Abstract

Abstract Converting low‐grade thermal energy with small temperature gradient into electricity is challenging due to the low efficiency and high cost. Here, a new type of thermal–electric nanogenerator is reported that utilizes electrokinetic effect for effective harvesting thermal energy. The nanogenerator is based on an evaporation‐driven water flow in porous medium with small temperature gradient. With a piece of porous carbon film and deionized water, a maximum open‐circuit voltage of 0.89 V under a temperature difference of 4.2 °C is obtained, having a corresponding pseudo‐Seebeck coefficient of 210 mV K −1 . The large pseudo‐Seebeck coefficient endows the nanogenerator sufficient power output for powering existing electronics directly. Furthermore, a wearable bracelet nanogenerator utilizing body heat is also demonstrated. The unique properties of such conversion process offer great potential for ultra‐low temperature‐gradient thermal energy recovery, wearable electronics, and self‐powered sensor systems.

How to cite this publication

Kang Liu, Tianpeng Ding, Jia Li, Qian Chen, Guobin Xue, Peihua Yang, Ming Xu, Zhong Lin Wang, Jun Zhou (2018). Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. , 8(13), DOI: https://doi.org/10.1002/aenm.201702481.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/aenm.201702481

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access