0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUmeå University
Summary 1. Chronosequences and associated space‐for‐time substitutions are an important and often necessary tool for studying temporal dynamics of plant communities and soil development across multiple time‐scales. However, they are often used inappropriately, leading to false conclusions about ecological patterns and processes, which has prompted recent strong criticism of the approach. Here, we evaluate when chronosequences may or may not be appropriate for studying community and ecosystem development. 2. Chronosequences are appropriate to study plant succession at decadal to millennial time‐scales when there is evidence that sites of different ages are following the same trajectory. They can also be reliably used to study aspects of soil development that occur between temporally linked sites over time‐scales of centuries to millennia, sometimes independently of their application to shorter‐term plant and soil biological communities. 3. Some characteristics of changing plant and soil biological communities (e.g. species richness, plant cover, vegetation structure, soil organic matter accumulation) are more likely to be related in a predictable and temporally linear manner than are other characteristics (e.g. species composition and abundance) and are therefore more reliably studied using a chronosequence approach. 4. Chronosequences are most appropriate for studying communities that are following convergent successional trajectories and have low biodiversity, rapid species turnover and low frequency and severity of disturbance. Chronosequences are least suitable for studying successional trajectories that are divergent, species‐rich, highly disturbed or arrested in time because then there are often major difficulties in determining temporal linkages between stages. 5. Synthesis. We conclude that, when successional trajectories exceed the life span of investigators and the experimental and observational studies that they perform, temporal change can be successfully explored through the judicious use of chronosequences.
Lawrence R. Walker, David A. Wardle, Richard D. Bardgett, Bruce D. Clarkson (2010). The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology, 98(4), pp. 725-736, DOI: 10.1111/j.1365-2745.2010.01664.x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Ecology
DOI
10.1111/j.1365-2745.2010.01664.x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access