0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn order to localize cerebral cognitive or sensorimotor function, activation paradigms are being used in conjunction with PET measures of cerebral activity (e.g., rCBF). The changes in local cerebral activity have two components: a global, region independent change and a local or regional change. As the first step in localizing the regional effects of an activation, global variance must be removed by a normalization procedure. A simple normalization procedure is division of regional values by the whole brain mean. This requires the dependence of local activity on global activity to be one of simple proportionality. This is shown not to be the case. Furthermore, a systematic deviation from a proportional relationship across brain regions is demonstrated. Consequently, any normalization must be approached on a pixel-by-pixel basis by measuring the change in local activity and change in global activity. The changes associated with an activation can be partitioned into global and local effects according to two models: one assumes that the increase in local activity depends on global values and the other assumes independence. It is shown that the increase in activity due to a cognitive activation is independent of global activity. This independence of the (activation) condition effect and the confounding linear effect of global activity on observed local activity meet the requirements for an analysis of covariance, with the “nuisance” variable as global activity and the activation condition as the categorical independent variable. These conclusions are based on analysis of data from 24 scans: six conditions over four normal subjects using a verbal fluency paradigm. A technique is described based on ANCOVA and using statistical parametric mapping to localize foci in the brain that have been significantly perturbed by the cognitive tasks. This technique represents a fundamental and necessary departure from ROI-based approaches allowing the separation of global and local effects pixel by pixel, and provides an image of affected regions whose significance can be quantified. The specificity and sensitivity of the described method of change detection is assessed.
Karl Friston, Chris Frith, Peter F. Liddle, Raymond J. Dolan, Adriaan A. Lammertsma, R. S. J. Frackowiak (1990). The Relationship between Global and Local Changes in PET Scans. Journal of Cerebral Blood Flow & Metabolism, 10(4), pp. 458-466, DOI: 10.1038/jcbfm.1990.88.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
1990
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of Cerebral Blood Flow & Metabolism
DOI
10.1038/jcbfm.1990.88
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access