0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The bathypelagic ocean (1000-4000 m depth) is the largest aquatic biome on Earth but it is still largely unexplored. Due to its prevalent low dissolved organic carbon concentrations, most of the prokaryotic metabolic activity is assumed to be associated to particles. The role of free-living prokaryotes has thus been mostly ignored, except that of some chemolithoautotrophic lineages. Here we used a global bathypelagic survey of size-fractionated metagenomic and 16S (genes and transcripts) data and performed a differential abundance analysis to explore the functional traits of the different prokaryotic life-strategies, their contribution to the active microbiome, and the role that the quality of the dissolved organic matter (DOM) plays in driving this contribution. We found that free-living prokaryotes have limited capacity to uplift their metabolism in response to environmental changes and display comparatively lower growth rates than particle associated prokaryotes, but are responsible for the synthesis of vitamins in the bathypelagic. Furthermore, their contribution to the active prokaryotic microbiome increased towards waters depleted of labile DOM, which represented a large fraction of the tropical and subtropical ocean sampled stations. This points to a relevant yet overlooked role of free-living prokaryotes in DOM cycling in the vast bathypelagic desert.
Marta Sebastián, Pablo Sánchez, Guillem Salazar, Xosé Antón Álvarez‐Salgado, Isabel Reche, Xosé Anxelu G. Morán, M. Montserrat Sala, Carlos M. Duarte, Silvia G. Acinas, Josep M. Gasol (2021). The quality of dissolved organic matter shapes the biogeography of the active bathypelagic microbiome. , DOI: https://doi.org/10.1101/2021.05.14.444136.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2021
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/2021.05.14.444136
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access