0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na+/H+ antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na+ transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na+ transporters, SOS1 was able to reduce Na+ accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1–green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter–β-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na+ than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na+ than did the wild type. There also was greater Na+ content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na+ transport from root to shoot. We present a model in which SOS1 functions in retrieving Na+ from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na+ into the xylem.
Huazhong Shi, Francisco J. Quintero, José M. Pardo, Jian Kang Zhu (2002). The Putative Plasma Membrane Na<sup>+</sup>/H<sup>+</sup> Antiporter SOS1 Controls Long-Distance Na<sup>+</sup> Transport in Plants. , 14(2), DOI: https://doi.org/10.1105/tpc.010371.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1105/tpc.010371
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access