0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe adverse effects of high salt on plants include Na(+) toxicity and hyperosmotic and oxidative stresses. The plasma membrane-localized Na(+)/H(+) antiporter SOS1 functions in the extrusion of toxic Na(+) from cells and is essential for plant salt tolerance. We report here that, under salt or oxidative stress, SOS1 interacts through its predicted cytoplasmic tail with RCD1, a regulator of oxidative-stress responses. Without stress treatment, RCD1 is localized in the nucleus. Under high salt or oxidative stress, RCD1 is found not only in the nucleus but also in the cytoplasm. Like rcd1 mutants, sos1 mutant plants show an altered sensitivity to oxidative stresses. The rcd1mutation causes a decrease in salt tolerance and enhances the salt-stress sensitivity of sos1 mutant plants. Several genes related to oxidative-stress tolerance were found to be regulated by both RCD1 and SOS1. These results reveal a previously uncharacterized function of a plasma membrane Na(+)/H(+) antiporter in oxidative-stress tolerance and shed light on the cross-talk between the ion-homeostasis and oxidative-stress detoxification pathways involved in plant salt tolerance.
Surekha Katiyar‐Agarwal, Jianhua Zhu, Kangmin Kim, Manu Agarwal, Xinmiao Fu, Alex Huang, Jian Kang Zhu (2006). The plasma membrane Na <sup>+</sup> /H <sup>+</sup> antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in <i>Arabidopsis</i>. , 103(49), DOI: https://doi.org/10.1073/pnas.0604711103.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1073/pnas.0604711103
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access