RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The pH optimum of soil exoenzymes adapt to long term changes in soil pH

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

The pH optimum of soil exoenzymes adapt to long term changes in soil pH

0 Datasets

0 Files

English
2019
Soil Biology and Biochemistry
Vol 138
DOI: 10.1016/j.soilbio.2019.107601

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Jérémy Puissant
Briony Jones
Tim Goodall
+8 more

Abstract

Soil exoenzymes released by microorganisms break down organic matter and are crucial in regulating C, N and P cycling. Soil pH is known to influence enzyme activity, and is also a strong driver of microbial community composition; but little is known about how alterations in soil pH affect enzymatic activity and how this is mediated by microbial communities. To assess long term enzymatic adaptation to soil pH, we conducted enzyme assays at buffered pH levels on two historically managed soils maintained at either pH 5 or 7 from the Rothamsted Park Grass Long-term experiment. The pH optima for a range of exoenzymes involved in C, N, P cycling, differed between the two soils, the direction of the shift being toward the source soil pH, indicating the production of pH adapted isoenzymes by the soil microbial community. Soil bacterial and fungal communities determined by amplicon sequencing were clearly distinct between pH 5 and soil pH 7 soils, possibly explaining differences in enzymatic responses. Furthermore, β-glucosidase gene sequences extracted from metagenomes revealed an increased abundance of Acidobacterial producers in the pH 5 soils, and Actinobacteria in pH 7 soils. Our findings demonstrate that the pH optimum of soil exoenzymes adapt to long term changes in soil pH, the direction being dependent on the soil pH shift; and we provide further evidence that changes in functional microbial communities may underpin this phenomena, though new research is now needed to directly link change in enzyme activity optima with microbial communities. More generally, our new findings have large implications for modelling the efficiency of different microbial enzymatic processes under changing environmental conditions.

How to cite this publication

Jérémy Puissant, Briony Jones, Tim Goodall, Dana Mang, Aimeric Blaud, Hyun S. Gweon, Ashish Malik, Davey L Jones, Ian M. Clark, P. R. Hirsch, Robert I. Griffiths (2019). The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biology and Biochemistry, 138, pp. 107601-107601, DOI: 10.1016/j.soilbio.2019.107601.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2019.107601

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access