0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiodegradable mulch film potentially offers an encouraging alternative to conventional (petroleum-based) plastic films. Since biodegradable films are more susceptible to rapid degradation, more microplastics (MPs) are likely to be generated than conventional films within the same time frame, probably leading to more severe MPs pollution and associated effects. However, the effect of biodegradable mulch film residues and associated MPs pollution on plant-soil health remains uncertainty. Here, we evaluated the potential effect of bio-MPs pollution on soil carbon (C) and nutrient (i.e., N and P) cycling, soil biology (microorganisms and mesofauna), and plant health, as these are crucial to agroecosystem functioning and the delivery of key ecosystem services. Unlike the inert (and therefore recalcitrant) C contained within petroleum-based MPs, at least 80% of the C from bio-MPs is converted to CO2, with up to 20% immobilized in living microbial biomass (i.e., < 0.05 t C ha−1). Although biodegradable films are unlikely to be important in promoting soil C storage, they may accelerate microbial biomass turnover in the short term, as well as CO2 production. Compared to conventional MPs, bio-MPs degradation is more pronounced, thereby inducing greater alterations in microbial diversity and community composition. This may further alter N2O and CH4 emissions, and ultimately resulting in unpredictable consequences for global climate warming. The extent to which this may occur, however, has yet to be shown in either laboratory or field studies. In addition, bio-MPs have a large chance of forming nanoplastics, potentially causing a stronger toxic effect on plants relative to conventional MPs. Consequently, this would influence plant health, crop productivity, and food safety, leading to potential health risks. It is unclear, however, if these are direct effects on key plant processes (e.g. signaling, cell expansion) or indirect effects (e.g. nutrient deficiency or acidification). Overall, the question as to whether biodegradable mulch films offer a promising alternative to solve the conventional plastic legacy in soil over the long term remains unclear.
Jie Zhou, Rong Jia, Robert W. Brown, Yadong Yang, Zhaohai Zeng, Davey L Jones, Huadong Zang (2022). The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. Journal of Hazardous Materials, 442, pp. 130055-130055, DOI: 10.1016/j.jhazmat.2022.130055.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Journal of Hazardous Materials
DOI
10.1016/j.jhazmat.2022.130055
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access