RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health

0 Datasets

0 Files

English
2022
Journal of Hazardous Materials
Vol 442
DOI: 10.1016/j.jhazmat.2022.130055

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Jie Zhou
Rong Jia
Robert W. Brown
+4 more

Abstract

Biodegradable mulch film potentially offers an encouraging alternative to conventional (petroleum-based) plastic films. Since biodegradable films are more susceptible to rapid degradation, more microplastics (MPs) are likely to be generated than conventional films within the same time frame, probably leading to more severe MPs pollution and associated effects. However, the effect of biodegradable mulch film residues and associated MPs pollution on plant-soil health remains uncertainty. Here, we evaluated the potential effect of bio-MPs pollution on soil carbon (C) and nutrient (i.e., N and P) cycling, soil biology (microorganisms and mesofauna), and plant health, as these are crucial to agroecosystem functioning and the delivery of key ecosystem services. Unlike the inert (and therefore recalcitrant) C contained within petroleum-based MPs, at least 80% of the C from bio-MPs is converted to CO2, with up to 20% immobilized in living microbial biomass (i.e., < 0.05 t C ha−1). Although biodegradable films are unlikely to be important in promoting soil C storage, they may accelerate microbial biomass turnover in the short term, as well as CO2 production. Compared to conventional MPs, bio-MPs degradation is more pronounced, thereby inducing greater alterations in microbial diversity and community composition. This may further alter N2O and CH4 emissions, and ultimately resulting in unpredictable consequences for global climate warming. The extent to which this may occur, however, has yet to be shown in either laboratory or field studies. In addition, bio-MPs have a large chance of forming nanoplastics, potentially causing a stronger toxic effect on plants relative to conventional MPs. Consequently, this would influence plant health, crop productivity, and food safety, leading to potential health risks. It is unclear, however, if these are direct effects on key plant processes (e.g. signaling, cell expansion) or indirect effects (e.g. nutrient deficiency or acidification). Overall, the question as to whether biodegradable mulch films offer a promising alternative to solve the conventional plastic legacy in soil over the long term remains unclear.

How to cite this publication

Jie Zhou, Rong Jia, Robert W. Brown, Yadong Yang, Zhaohai Zeng, Davey L Jones, Huadong Zang (2022). The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. Journal of Hazardous Materials, 442, pp. 130055-130055, DOI: 10.1016/j.jhazmat.2022.130055.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Journal of Hazardous Materials

DOI

10.1016/j.jhazmat.2022.130055

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access