0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAmino acids and peptides are important regulators of ecosystem functioning due to their potential role as direct nutrient sources for plants and soil microbes. However, the turnover and driving factors of these compounds in agricultural soils remain poorly understood. This study aimed to reveal the short-term fate of 14C-labeled alanine and tri-alanine derived C under flooding conditions of the top (0–20 cm) and sub-horizons (20–40 cm) of subtropical paddy soils taken from four long-term (31 years since treatment) nitrogen (N) fertilization regimes (i.e., without fertilization, NPK, NPK with straw return (NPKS) or with manure (NPKM)). Amino acid mineralization was strongly affected by the N fertilization regime and soil depth, while peptide mineralization was only distinct between soil layers. The average half-life of amino acid and peptide in the topsoil was 8 h across all treatments, which was higher than previously reported in uplands. The microbial turnover of amino acid and peptide was 7–10 times slower in the subsoil than in the topsoil, with a half-life of about 2–3 days. The half-life of amino acid and peptide for the respired pool was strongly associated with soil physicochemical characteristics, the total biomass, and the structure of soil microbial communities. The N fertilization regime and soil depth affected the substrate uptake rate by microorganisms, with greater uptake observed in the NPKS and NPKM treatments and the topsoil. Microbial amino acid uptake was correlated with the biomass of total and individual microbial groups, whereas microbial peptide uptake was associated with the soil microbial community structure and physicochemical characteristics. This suggests that there are various pathways of amino acid and peptide use by microorganisms under flooding conditions. We conclude that microbial mineralization of amino acid and its peptide in paddy soils under flooding conditions is slower than in upland soils, and that microbial uptake of these substrates is related to soil abiotic factors and the biomass and structure of soil microbial community. These findings have important implications for understanding nutrient cycling and ecosystem functioning in agricultural soils.
Hong Wang, Jinyang Wang, Mouliang Xiao, Tida Ge, Anna Gunina, Davey L Jones (2023). The fate of amino acid and peptide as affected by soil depth and fertilization regime in subtropical paddies. The Science of The Total Environment, 889, pp. 164245-164245, DOI: 10.1016/j.scitotenv.2023.164245.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2023.164245
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access