RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The fate of amino acid and peptide as affected by soil depth and fertilization regime in subtropical paddies

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

The fate of amino acid and peptide as affected by soil depth and fertilization regime in subtropical paddies

0 Datasets

0 Files

English
2023
The Science of The Total Environment
Vol 889
DOI: 10.1016/j.scitotenv.2023.164245

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Hong Wang
Jinyang Wang
Mouliang Xiao
+3 more

Abstract

Amino acids and peptides are important regulators of ecosystem functioning due to their potential role as direct nutrient sources for plants and soil microbes. However, the turnover and driving factors of these compounds in agricultural soils remain poorly understood. This study aimed to reveal the short-term fate of 14C-labeled alanine and tri-alanine derived C under flooding conditions of the top (0–20 cm) and sub-horizons (20–40 cm) of subtropical paddy soils taken from four long-term (31 years since treatment) nitrogen (N) fertilization regimes (i.e., without fertilization, NPK, NPK with straw return (NPKS) or with manure (NPKM)). Amino acid mineralization was strongly affected by the N fertilization regime and soil depth, while peptide mineralization was only distinct between soil layers. The average half-life of amino acid and peptide in the topsoil was 8 h across all treatments, which was higher than previously reported in uplands. The microbial turnover of amino acid and peptide was 7–10 times slower in the subsoil than in the topsoil, with a half-life of about 2–3 days. The half-life of amino acid and peptide for the respired pool was strongly associated with soil physicochemical characteristics, the total biomass, and the structure of soil microbial communities. The N fertilization regime and soil depth affected the substrate uptake rate by microorganisms, with greater uptake observed in the NPKS and NPKM treatments and the topsoil. Microbial amino acid uptake was correlated with the biomass of total and individual microbial groups, whereas microbial peptide uptake was associated with the soil microbial community structure and physicochemical characteristics. This suggests that there are various pathways of amino acid and peptide use by microorganisms under flooding conditions. We conclude that microbial mineralization of amino acid and its peptide in paddy soils under flooding conditions is slower than in upland soils, and that microbial uptake of these substrates is related to soil abiotic factors and the biomass and structure of soil microbial community. These findings have important implications for understanding nutrient cycling and ecosystem functioning in agricultural soils.

How to cite this publication

Hong Wang, Jinyang Wang, Mouliang Xiao, Tida Ge, Anna Gunina, Davey L Jones (2023). The fate of amino acid and peptide as affected by soil depth and fertilization regime in subtropical paddies. The Science of The Total Environment, 889, pp. 164245-164245, DOI: 10.1016/j.scitotenv.2023.164245.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

The Science of The Total Environment

DOI

10.1016/j.scitotenv.2023.164245

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access