0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr−1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr−1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (−36 ± 6%) and tropical intact (−31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr−1 in 1990–2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr−1 in 1990–2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3. Data from boreal, temperate and tropical forests over the past three decades reveal that the global forest carbon sink has remained steady during that time, despite considerable regional variation.
Yude Pan, Richard A. Birdsey, Oliver L. Phillips, R. A. Houghton, Jingyun Fang, Pekka E. Kauppi, Heather Keith, Werner A. Kurz, Akihiko Ito, Simon L. Lewis, G.J. Nabuurs, А. Shvidenko, Shoji Hashimoto, Bas Lerink, Dmitry Schepaschenko, Andrea Castanho, Daniel Murdiyarso (2024). The enduring world forest carbon sink. Nature, 631(8021), pp. 563-569, DOI: 10.1038/s41586-024-07602-x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
17
Datasets
0
Total Files
0
Language
English
Journal
Nature
DOI
10.1038/s41586-024-07602-x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access