0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRice is a major source of dietary cadmium (Cd), a toxic heavy metal that poses serious threat to human health. How rice takes up and accumulates Cd is not fully understood. Here, we characterize the function of a cation/H+ exchanger, OsCAX2, in Cd uptake in roots and Cd accumulation in shoots and grains. OsCAX2 exhibited Cd and calcium (Ca) transport activities when was heterologously expressed in yeast. OsCAX2 was mainly expressed in roots, particularly in lateral roots, and in the exodermis and endodermis of primary roots. OsCAX2 is localized at the plasma membrane. Knockout of OsCAX2 significantly decreased Cd uptake in roots and Cd accumulation in shoots and grains. Knockout of OsCAX2 also decreased the Ca concentration in roots, but not in shoots or grains. Surprisingly, overexpression of OsCAX2 also resulted in a significant decrease in the Cd concentrations in roots and shoots. We further reveal that the variation in the coding sequence of OsCAX2 contributes to differential grain Cd accumulation between two major rice subspecies, Indica and Japonica. Our results demonstrate that OsCAX2 functions in Cd/Ca uptake in roots and could be a useful target for breeding or genetic engineering low Cd rice varieties.
Xiang‐Qian Liu, Huan Liu, M. Fu, Liwen Zhang, S. L. Yin, Zhong Tang, Fang-jie Zhao, Xin-Yuan Huang (2025). The cation/H+ exchanger OsCAX2 is involved in cadmium uptake and contributes to differential grain cadmium accumulation between Indica and Japonica rice. Journal of Hazardous Materials, 487, pp. 137252-137252, DOI: 10.1016/j.jhazmat.2025.137252.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Journal of Hazardous Materials
DOI
10.1016/j.jhazmat.2025.137252
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration