RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The cation/H+ exchanger OsCAX2 is involved in cadmium uptake and contributes to differential grain cadmium accumulation between Indica and Japonica rice

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

The cation/H+ exchanger OsCAX2 is involved in cadmium uptake and contributes to differential grain cadmium accumulation between Indica and Japonica rice

0 Datasets

0 Files

English
2025
Journal of Hazardous Materials
Vol 487
DOI: 10.1016/j.jhazmat.2025.137252

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Fang-jie Zhao
Fang-jie Zhao

Nanjing Agricultural University

Verified
Xiang‐Qian Liu
Huan Liu
M. Fu
+5 more

Abstract

Rice is a major source of dietary cadmium (Cd), a toxic heavy metal that poses serious threat to human health. How rice takes up and accumulates Cd is not fully understood. Here, we characterize the function of a cation/H+ exchanger, OsCAX2, in Cd uptake in roots and Cd accumulation in shoots and grains. OsCAX2 exhibited Cd and calcium (Ca) transport activities when was heterologously expressed in yeast. OsCAX2 was mainly expressed in roots, particularly in lateral roots, and in the exodermis and endodermis of primary roots. OsCAX2 is localized at the plasma membrane. Knockout of OsCAX2 significantly decreased Cd uptake in roots and Cd accumulation in shoots and grains. Knockout of OsCAX2 also decreased the Ca concentration in roots, but not in shoots or grains. Surprisingly, overexpression of OsCAX2 also resulted in a significant decrease in the Cd concentrations in roots and shoots. We further reveal that the variation in the coding sequence of OsCAX2 contributes to differential grain Cd accumulation between two major rice subspecies, Indica and Japonica. Our results demonstrate that OsCAX2 functions in Cd/Ca uptake in roots and could be a useful target for breeding or genetic engineering low Cd rice varieties.

How to cite this publication

Xiang‐Qian Liu, Huan Liu, M. Fu, Liwen Zhang, S. L. Yin, Zhong Tang, Fang-jie Zhao, Xin-Yuan Huang (2025). The cation/H+ exchanger OsCAX2 is involved in cadmium uptake and contributes to differential grain cadmium accumulation between Indica and Japonica rice. Journal of Hazardous Materials, 487, pp. 137252-137252, DOI: 10.1016/j.jhazmat.2025.137252.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Journal of Hazardous Materials

DOI

10.1016/j.jhazmat.2025.137252

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration