0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWire arc additive manufacturing (WAAM), a method of metal 3D printing, has the capacity to create large scale elements suitable for construction applications with a high degree of design freedom and structural efficiency. There is currently however a lack of fundamental experimental data on the material and structural performance of such elements. Towards addressing this limitation, the tensile behaviour of WAAM high strength steel produced using different printing strategies is the focus of the present study. WAAM steel plates and tubular tension members manufactured with different interpass temperatures and toolpaths using ER110S-G welding wire were examined. A total of 60 tensile coupons, consisting of 40 as-built and 20 machined specimens, and 8 as-built circular hollow section (CHS) tension members, were tested. The examined WAAM materials were found to exhibit very little anisotropy, corroborated by a nearly homogeneous crystallographic texture observed by microstructural analysis, while the inherent surface undulations were shown to result in a varying degree of reduction in the material stiffness, strength and ductility at different angles to the print layer orientation. The tension members showed good structural resistance, but a considerable reduction in ductility compared to the coupon tests, due to the greater geometric variability and manufacturing defects.
Ben Weber, Xin Meng, Ruizhi Zhang, Masashi Nitawaki, Leroy Gardner (2023). Tensile Behaviour of Waam High Strength Steel Material and Members. , DOI: https://doi.org/10.2139/ssrn.4501258.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.2139/ssrn.4501258
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access