0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTemperature sensitivity (Q 10 ) of soil organic matter (SOM) decomposition is a crucial parameter to predict the fate of soil carbon (C) under global warming. Nonetheless, the response pattern of Q 10 to continuous warming and the underlying mechanisms are still under debate, especially considering the complex interactions between Q 10 , SOM quality, and soil microorganisms. We examined the Q 10 of SOM decomposition across a mean annual temperature (MAT) gradient from −1.9 to 5.1°C in temperate mixed forest ecosystems in parallel with SOM quality and bioavailability, microbial taxonomic composition, and functional genes responsible for organic carbon decomposition. Within this temperature gradient of 7.0°C, the Q 10 values increased with MAT, but decreased with SOM bioavailability. The Q 10 values increased with the prevalence of K‐strategy of soil microbial community, which was characterized by: (i) high ratios of oligotrophic to copiotrophic taxa, (ii) ectomycorrhizal to saprotrophic fungi, (iii) functional genes responsible for degradation of recalcitrant to that of labile C, and (iv) low average 16S rRNA operon copy number. Because the recalcitrant organic matter was mainly utilized by the K‐strategists, these findings independently support the carbon quality‐temperature theory from the perspective of microbial taxonomic composition and functions. A year‐long incubation experiment was performed to determine the response of labile and recalcitrant C pools to warming based on the two‐pool model. The decomposition of recalcitrant SOM was more sensitive to increased temperature in southern warm regions, which might attribute to the dominance of K‐selected microbial communities. It implies that climate warming would mobilize the larger recalcitrant pools in warm regions, exacerbating the positive feedback between increased MAT and CO 2 efflux. This is the first attempt to link temperature sensitivity of SOM decomposition with microbial eco‐strategies by incorporating the genetic information and disentangling the complex relationship between Q 10 and soil microorganisms.
Hui Li, Shan Yang, M. V. Semenov, Fei Yao, Ji Ye, Rencang Bu, Ruiao Ma, Junjie Lin, I. N. Kurganova, Xugao Wang, Ye Deng, И. К. Кравченко, Yong Jiang, Yakov Kuzyakov (2021). Temperature sensitivity of SOM decomposition is linked with a K‐selected microbial community. Global Change Biology, 27(12), pp. 2763-2779, DOI: 10.1111/gcb.15593.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
Global Change Biology
DOI
10.1111/gcb.15593
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access