0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCarbon dioxide (CO2) and methane (CH4) are recognized as the main greenhouse gases causing climate warming. In forest ecosystems, the death of trees leads to the formation of coarse woody debris (CWD) that is one of the sources of greenhouse gas emissions due to wood decomposition. We quantified the CO2 and CH4 fluxes from CWD of larch (Larix gmelinii (Rupr.)) and birch (Betula tortuosa Ledeb.) collected in the northern boreal forests of Central Siberia. The CWD samples were incubated at +5, +15 and +25 °C. The CO2 and CH4 fluxes showed strong correlations with temperature, moisture, decomposition stage and the type of wood’s rot. The temperature coefficient Q10 indicated higher temperature sensitivity of CO2 flux within the temperature interval from +5 to +15 °C than from +15 to +25 °C. Methane flux had higher temperature sensitivity within the interval from +15 to +25 °C. It was found that, in boreal forests, CWD of early decay stage can serve as a source of methane to the atmosphere when air temperatures increased above +15 °C. Strong positive correlation between CH4 production and CO2 emission indicated a biological source and supported findings on aerobic origin of the main process contributing to the CH4 flux from decomposing CWD.
Liudmila Mukhortova, Н. В. Пашенова, Maria Meteleva, Leonid Krivobokov, Georg Guggenberger (2021). Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests. Forests, 12(5), pp. 624-624, DOI: 10.3390/f12050624.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Forests
DOI
10.3390/f12050624
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access