RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests

0 Datasets

0 Files

English
2021
Forests
Vol 12 (5)
DOI: 10.3390/f12050624

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Liudmila Mukhortova
Liudmila Mukhortova

Institution not specified

Verified
Liudmila Mukhortova
Н. В. Пашенова
Maria Meteleva
+2 more

Abstract

Carbon dioxide (CO2) and methane (CH4) are recognized as the main greenhouse gases causing climate warming. In forest ecosystems, the death of trees leads to the formation of coarse woody debris (CWD) that is one of the sources of greenhouse gas emissions due to wood decomposition. We quantified the CO2 and CH4 fluxes from CWD of larch (Larix gmelinii (Rupr.)) and birch (Betula tortuosa Ledeb.) collected in the northern boreal forests of Central Siberia. The CWD samples were incubated at +5, +15 and +25 °C. The CO2 and CH4 fluxes showed strong correlations with temperature, moisture, decomposition stage and the type of wood’s rot. The temperature coefficient Q10 indicated higher temperature sensitivity of CO2 flux within the temperature interval from +5 to +15 °C than from +15 to +25 °C. Methane flux had higher temperature sensitivity within the interval from +15 to +25 °C. It was found that, in boreal forests, CWD of early decay stage can serve as a source of methane to the atmosphere when air temperatures increased above +15 °C. Strong positive correlation between CH4 production and CO2 emission indicated a biological source and supported findings on aerobic origin of the main process contributing to the CH4 flux from decomposing CWD.

How to cite this publication

Liudmila Mukhortova, Н. В. Пашенова, Maria Meteleva, Leonid Krivobokov, Georg Guggenberger (2021). Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests. Forests, 12(5), pp. 624-624, DOI: 10.3390/f12050624.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Forests

DOI

10.3390/f12050624

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access