0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIntelligent reflecting surface (IRS) has emerged as a promising technology to reconfigure the radio propagation environment by dynamically controlling wireless signal's amplitude and/or phase via a large number of reflecting elements. In contrast to the vast literature on studying IRS's performance gains in wireless communications, we study in this paper a new application of IRS for sensing/localizing targets in wireless networks. Specifically, we propose a new <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">self-sensing IRS</i> architecture where the IRS controller is capable of transmitting probing signals that are not only directly reflected by the target (referred to as the direct echo link), but also consecutively reflected by the IRS and then the target (referred to as the IRS-reflected echo link). Moreover, dedicated sensors are installed at the IRS for receiving both the direct and IRS-reflected echo signals from the target, such that the IRS can sense the direction of its nearby target by applying a customized multiple signal classification (MUSIC) algorithm. However, since the angle estimation mean square error (MSE) by the MUSIC algorithm is intractable, we propose to optimize the IRS passive reflection for maximizing the average echo signals' total power at the IRS sensors and derive the resultant Cramer-Rao bound (CRB) of the angle estimation MSE. Last, numerical results are presented to show the effectiveness of the proposed new IRS sensing architecture and algorithm, as compared to other benchmark sensing systems/algorithms.
Xiaodan Shao, Changsheng You, Wenyan Ma, Xiaoming Chen, Rui Zhang (2022). Target Sensing With Intelligent Reflecting Surface: Architecture and Performance. IEEE Journal on Selected Areas in Communications, 40(7), pp. 2070-2084, DOI: 10.1109/jsac.2022.3155546.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Journal on Selected Areas in Communications
DOI
10.1109/jsac.2022.3155546
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access