0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNature uses enzymes to dissociate and transfer H2 by combining Fe2+ and H+ acceptor/donor catalytic active sites. Following a biomimetic approach, it is reported here that very small planar Fe2,3+ oxide nanoparticles (2.0 ± 0.5 nm) supported on slightly acidic inorganic oxides (nanocrystalline TiO2, ZrO2, ZnO) act as bifunctional catalysts to dissociate and transfer H2 to alkynes chemo- and stereoselectively. This catalyst is synthesized by oxidative dispersion of Fe0 nanoparticles at the isoelectronic point of the support. The resulting Fe2+,3+ solid catalyzes not only, in batch, the semihydrogenation of different alkynes with good yields but also the removal of acetylene from ethylene streams with >99.9% conversion and selectivity. These efficient and robust non-noble-metal catalysts, alternative to existing industrial technologies based on Pd, constitute a step forward toward the design of fully sustainable and nontoxic selective hydrogenation solid catalysts.
María Tejeda–Serrano, Jose R. Cabrero‐Antonino, Virginia Mainar-Ruiz, Miguel López‐Haro, Juan Carlos Hernández‐Garrido, José J. Calvino, Antonio Leyva‐Pérez, Avelino Avelino (2017). Synthesis of Supported Planar Iron Oxide Nanoparticles and Their Chemo- and Stereoselectivity for Hydrogenation of Alkynes. ACS Catalysis, 7(5), pp. 3721-3729, DOI: 10.1021/acscatal.7b00037.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
ACS Catalysis
DOI
10.1021/acscatal.7b00037
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access