0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSilver octahedra with edge lengths controlled in the range of 20–72 nm were synthesized via seed-mediated growth. The key to the success of this synthesis is the use of single-crystal Ag seeds with uniform and precisely controlled sizes to direct the growth and the use of citrate as a selective capping agent for the {111} facets. Our mechanistic studies demonstrated that Ag seeds with both cubic and quasi-spherical shapes could evolve into octahedra. For the first time, we were able to precisely control the edge lengths of Ag octahedra below 100 nm, and the lower limit of size could even be pushed down to 20 nm. Using the as-obtained Ag octahedra as sacrificial templates, Au nanocages with an octahedral shape and precisely tunable optical properties were synthesized through a galvanic replacement reaction. Such hollow nanostructures are promising candidates for a broad range of applications related to optics, catalysis, and biomedicine.
Yi Wang, Dehui Wan, Shuifen Xie, Xiaohu Xia, Cheng Zhi Huang, Younan Xia (2013). Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties <i>via</i> Seed-Mediated Growth. , 7(5), DOI: https://doi.org/10.1021/nn401363e.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nn401363e
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access