0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA technique has been developed to transform a Si-Ge thin film into Si-Ge oxide nanowires with the assistance of Au particles through a three-step annealing process. A honeycomb network of Au colloidal nanoparticles was self-assembled; 400°C annealing removes the surface surfactant; 800°C annealing forms hexagonally self-assembled Au particles on the thin-film surface; finally, a 1075°C annealing results in the growth of oxide nanowires on the surfaces of Au particles. Synthesized nanowires have an emission peak at 3.3 eV. This technique is useful for growing silicon oxide nanowires with a tunable amount of Ge doping.
Jr‐Hau He, Tsung-Han Wu, Cheng‐Lun Hsin, Li‐Jen Chen, Zhong Lin Wang (2005). Synthesis of Si-Ge Oxide Nanowires via the Transformation of Si-Ge Thin Films with Self-Assembled Au Catalysts. , 8(10), DOI: https://doi.org/10.1149/1.2001792.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2005
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1149/1.2001792
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access