0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPhotochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant bistable properties. Based on an aggregation-induced emission (AIE) mechanism, this study employed a molecular structural engineering strategy to design and synthesize a series of diarylethene derivatives containing ethyl benzoate substituents. A systematic investigation of the structure–activity relationship between their photochromic behavior and AIE characteristics revealed a dual-state light response mechanism in the solid and solution states. This study demonstrates that the target compounds exhibited significant photochromic responses under UV–visible light irradiation, with enhanced emission in the solid state compared to the solution state, confirming the remarkable enhancement effect of AIE on aggregation. Structural characterization techniques such as nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (H RMS) were employed to elucidate the correlation between molecular conformation and photophysical properties. Furthermore, these materials demonstrated potential for multi-level anti-counterfeiting, high-density optical storage, and bioimaging applications, providing experimental foundations for the development of novel multifunctional photochromic materials.
Jiaxin Guo, Hua‐Zhong Yu, Yuhua Jin (2025). Synthesis and Photochromic Properties of Diarylethene Derivatives with Aggregation-Induced Emission (AIE) Behavior. Materials, 18(11), pp. 2520-2520, DOI: 10.3390/ma18112520.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Materials
DOI
10.3390/ma18112520
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access