RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter

0 Datasets

0 Files

English
2020
Scientific Reports
Vol 10 (1)
DOI: 10.1038/s41598-020-67953-z

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Francisco J. Matus
Francisco J. Matus

Institution not specified

Verified
Carolina Merino
Yakov Kuzyakov
Karina Godoy
+2 more

Abstract

In temperate rainforest soils of southern Chile (38 °S), there are high rates of soil organic carbon (SOC) mineralization under oxygen (O2) limitation. We study the combined effects of Fenton reactions and the activity of two enzymes manganese peroxidase (MnP) and lignin peroxidase (LiP), which was hypothesised potentiate SOC mineralization under anoxic conditions leading to carbon dioxide (CO2) release. Both mechanisms produce free radicals when competing for SOC oxidation in the absence of microorganisms. We quantify the CO2 release by induced Fenton reactions in combination with MnP and LiP under aerobic and anaerobic conditions (20 °C, 36 h) in temperate rainforest soils. CO2 levels released by Fenton reactions and enzyme activity were eight times higher than those released by Fenton reaction and peroxidase enzymes in individual treatment. Approximately 31% of the CO2 released under aerobic soil incubation was found to be abiotic (sterilized), while 69% was biotic (non-sterilized soils), and respective values of 17% and 83% were recorded under anaerobic conditions. The relative fluorescence intensity clearly shows ·OH radicals production from Fenton reactions. In conclusion, levels of MnP and LiP coupled with Fenton reactions strongly increase SOC mineralization under long periods of O2 limitation in temperate rainforest soils.

How to cite this publication

Carolina Merino, Yakov Kuzyakov, Karina Godoy, Pablo Cornejo, Francisco J. Matus (2020). Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter. Scientific Reports, 10(1), DOI: 10.1038/s41598-020-67953-z.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Scientific Reports

DOI

10.1038/s41598-020-67953-z

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access