0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe advancement of the Internet of Things (IoT) has increased the demand for large-scale intelligent sensing systems. The periodic replacement of power sources for ubiquitous sensing systems leads to significant resource waste and environmental pollution. Human staffing costs associated with replacement also increase the economic burden. The triboelectric nanogenerators (TENGs) provide both an energy harvesting scheme and the possibility of self-powered sensing. Based on contact electrification from different materials, TENGs provide a rich material selection to collect complex and diverse data. As the data collected by TENGs become increasingly numerous and complex, different approaches to machine learning (ML) and deep learning (DL) algorithms have been proposed to efficiently process output signals. In this paper, the latest advances in ML algorithms assisting solid-solid TENG and liquid-solid TENG sensors are reviewed based on the sample size and complexity of the data. The pros and cons of various algorithms are analyzed and application scenarios of various TENG sensing systems are presented. The prospects of synergizing hardware (TENG sensors) with software (ML algorithms) in a complex environment and their main challenges for future developments are discussed.
Roujuan Li, Di Wei, Zhong Lin Wang (2024). Synergizing Machine Learning Algorithm with Triboelectric Nanogenerators for Advanced Self-Powered Sensing Systems. , 14(2), DOI: https://doi.org/10.3390/nano14020165.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/nano14020165
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access