0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe investigate front propagation and synchronization transitions in dependence on the information transmission delay and coupling strength over scale-free neuronal networks with different average degrees and scaling exponents. As the underlying model of neuronal dynamics, we use the efficient Rulkov map with additive noise. We show that increasing the coupling strength enhances synchronization monotonously, whereas delay plays a more subtle role. In particular, we found that depending on the inherent oscillation frequency of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions manifest as well-expressed minima in the measure for spatial synchrony, appearing at every multiple of the oscillation frequency. Larger coupling strengths or average degrees can broaden the region of regular propagating fronts by a given information transmission delay and further improve synchronization. These results are robust against variations in system size, intensity of additive noise, and the scaling exponent of the underlying scale-free topology. We argue that fine-tuned information transmission delays are vital for assuring optimally synchronized excitatory fronts on complex neuronal networks and, indeed, they should be seen as important as the coupling strength or the overall density of interneuronal connections. We finally discuss some biological implications of the presented results.
Qingyun Wang, Matjaž Perc, Zhisheng Duan, Guanrong Chen (2009). Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Physical Review E, 80(2), DOI: 10.1103/physreve.80.026206.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Physical Review E
DOI
10.1103/physreve.80.026206
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access