RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Sustainable RF Wireless Energy Transfer for Massive IoT: Enablers and Challenges

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Sustainable RF Wireless Energy Transfer for Massive IoT: Enablers and Challenges

0 Datasets

0 Files

English
2023
IEEE Access
Vol 11
DOI: 10.1109/access.2023.3337214

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Osmel Martínez Rosabal
Onel L. Alcaraz López
Hirley Alves
+1 more

Abstract

Reliable energy supply remains a crucial challenge in the Internet of Things (IoT). Although relying on batteries is cost-effective for a few devices, it is neither a scalable nor a sustainable charging solution as the network grows massive. Besides, current energy-saving technologies alone cannot cope, for instance, with the vision of zero-energy devices and the deploy-and-forget paradigm which can unlock a myriad of new use cases. In this context, sustainable radio frequency wireless energy transfer emerges as an attractive solution for efficiently charging the next generation of ultra low power IoT devices. Herein, we highlight that sustainable charging is broader than conventional green charging, as it focuses on balancing economy prosperity and social equity in addition to environmental health. We discuss the economic implications of powering energy transmitters with ambient energy sources, and reveal insights on their optimal deployment. Moreover, we overview different methods for modeling the energy arrival process of ambient energy sources and discuss their application in different use cases. We highlight the potential of integrating sustainable WET with energy harvesting from nearby transmitters and discuss enhancements in energy receiver design. We also illustrate the role of different technologies in enabling sustainable WET and exemplify various use cases. Besides, we reveal insights into low-complexity architectures designed at the energy transmitters. We highlight relevant research challenges and candidate solutions.

How to cite this publication

Osmel Martínez Rosabal, Onel L. Alcaraz López, Hirley Alves, Matti Latva-aho (2023). Sustainable RF Wireless Energy Transfer for Massive IoT: Enablers and Challenges. IEEE Access, 11, pp. 133979-133992, DOI: 10.1109/access.2023.3337214.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

IEEE Access

DOI

10.1109/access.2023.3337214

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access