0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRecycled sources of phosphorus (P), such as struvite extracted from wastewater, have potential to substitute for more soluble manufactured fertilisers and help reduce the long-term threat to food security from dwindling finite reserves of phosphate rock (PR). This study aimed to determine whether struvite could be a component of a sustainable P fertiliser management strategy for arable crops.A combination of laboratory experiments, pot trials and mathematical modelling of the root system examined the P release properties of commercial fertiliser-grade struvite and patterns of P uptake from a low-P sandy soil by two different crop types, in comparison to more soluble inorganic P fertilisers (di-ammonium phosphate (DAP) and triple super phosphate (TSP)).Struvite had greatly enhanced solubility in the presence of organic acid anions; buckwheat, which exudes a high level of organic acids, was more effective at mobilising struvite P than the low level exuder, spring wheat. Struvite granules placed with the seed did not provide the same rate of P supply as placed DAP granules for early growth of spring wheat, but gave equivalent rates of P uptake, yield and apparent fertiliser recovery at harvest, even though only 26 % of struvite granules completely dissolved. Fertiliser mixes containing struvite and DAP applied to spring wheat have potential to provide both optimal early and late season P uptake and improve overall P use efficiency.We conclude that the potential resource savings and potential efficiency benefits of utilising a recycled slow release fertiliser like struvite offers a more sustainable alternative to only using conventional, high solubility, PR-based fertilisers.
Peter J. Talboys, James Heppell, Tiina Roose, John R. Healey, Davey L Jones, Paul J. A. Withers (2015). Struvite: a slow-release fertiliser for sustainable phosphorus management?. Plant and Soil, 401(1-2), pp. 109-123, DOI: 10.1007/s11104-015-2747-3.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Plant and Soil
DOI
10.1007/s11104-015-2747-3
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access