RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Strongly coupled magneto-exciton condensates in large-angle twisted double bilayer graphene

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2024

Strongly coupled magneto-exciton condensates in large-angle twisted double bilayer graphene

0 Datasets

0 Files

English
2024
arXiv (Cornell University)
DOI: 10.48550/arxiv.2405.11761

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Qingxin Li
Yiwei Chen
LingNan Wei
+15 more

Abstract

Excitons, the bosonic quasiparticle emerging from Coulomb interaction between electrons and holes, will undergo a Bose-Einstein condensation(BEC) and transition into a superfluid state with global phase coherence at low temperatures. An important platform to study such excitonic physics is built on double-layer quantum wells or recent two-dimensional material heterostructures, where two parallel planes of electrons and holes are separated by a thin insulating layer. Lowering this separation distance ($d$) enhances the interlayer Coulomb interaction thereby strengthens the exciton binding energy. However, an exceedingly small $d$ will lead to the undesired interlayer tunneling, which results the annihilation of excitons. Here, we report the observation of a sequences of robust exciton condensates(ECs) in double bilayer graphenes twisted to $\sim 10^\circ$ with no insulating mid-layer. The large momentum mismatch between the two graphene layers well suppress the interlayer tunneling, allowing us to reach the separation lower limit $\sim$ 0.334 nm and investigate ECs in the extreme coupling regime. Carrying out transport measurements on the bulk and edge of the devices, we find incompressible states corresponding to ECs when both layers are half-filled in the $N=0$ and $N=1$ Landau levels (LLs). The comparison between these ECs and theoretical calculations suggest that the low-energy charged excitation of ECs can be meron-antimeron or particle-hole pair, which relies on both LL index and carrier type. Our results establish large-angle twisted bilayers as an experimental platform with extreme coupling strength for studying quantum bosonic phase and its low-energy excitations.

How to cite this publication

Qingxin Li, Yiwei Chen, LingNan Wei, Hong Chen, Yan Huang, Yujian Zhu, Wang Zhu, Dongdong An, Junwei Song, Qikang Gan, Qi Zhang, Kenji Watanabe, Takashi Taniguchi, Xiaoyang Shi, Konstantin ‘kostya’ Novoselov, Rui Wang, Geliang Yu, Lei Wang (2024). Strongly coupled magneto-exciton condensates in large-angle twisted double bilayer graphene. arXiv (Cornell University), DOI: 10.48550/arxiv.2405.11761.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2024

Authors

18

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

DOI

10.48550/arxiv.2405.11761

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access