0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Accompanying the boom in multifunctional wearable electronics, flexible, sustainable, and wearable power sources are facing great challenges. Here, a stretchable, washable, and ultrathin skin‐inspired triboelectric nanogenerator (SI‐TENG) to harvest human motion energy and act as a highly sensitive self‐powered haptic sensor is reported. With the optimized material selections and structure design, the SI‐TENG is bestowed with some merits, such as stretchability ( ≈ 800%), ultrathin ( ≈ 89 µ m), and light‐weight ( ≈ 0.23 g), which conformally attach on human skin without disturbing its contact. A stretchable composite electrode, which is formed by homogenously intertwining silver nanowires (AgNWs) with thermoplastic polyurethane (TPU) nanofiber networks, is fabricated through synchronous electrospinning of TPU and electrospraying of AgNWs. Based on the triboelectrification effect, the open‐circuit voltage, short‐circuit current, and power density of the SI‐TENG with a contact area of 2 × 2 cm 2 and an applied force of 8 N can reach 95 V, 0.3 µ A, and 6 mW m −2 , respectively. By integrating the signal‐processing circuits, the SI‐TENG with excellent energy harvesting and self‐powered sensing capability is demonstrated as a haptic sensor array to detect human actions. The SI‐TENG exhibits extensive applications in the fields of human–machine interface and security systems.
Yang Jiang, Kai Dong, Xin Li, Jie An, Dequan Wu, Peng Xiao, Jia Yi, Chuan Ning, Renwei Cheng, Pengtao Yu, Zhong Lin Wang (2020). Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin‐Like Highly Sensitive Self‐Powered Haptic Sensors. , 31(1), DOI: https://doi.org/10.1002/adfm.202005584.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.202005584
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access