RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils

0 Datasets

0 Files

English
2019
Journal of Integrative Agriculture
Vol 18 (7)
DOI: 10.1016/s2095-3119(18)62102-1

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Hongzhao Yuan
Zhenke Zhu
Xiaomeng Wei
+8 more

Abstract

The application of straw and biochar is widely practiced for the improvement of soil fertility. However, its impact on microbial functional profiles, particularly with regard to paddy soils, is not well understood. The aim of this study was to investigate the diversity of microbial carbon use patterns in paddy soils amended with straw or straw-derived biochar in a 3-year field experiment in fallow soil and at various development stages of a rice crop (i.e., tillering and blooming). We applied the community level physiological profiling approach, with 15 substrates (sugars, carboxylic and amino acids, and phenolic acid). In general, straw application resulted in the greatest microbial functional diversity owing to the greater number of available C sources than in control or biochar plots. Biochar amendment promoted the use of α-ketoglutaric acid, the mineralization of which was higher than that of any other substrate. Principal component analyses indicated that microbial functional diversity in the biochar-amended soil was separated from those of the straw-amended and control soils. Redundancy analyses revealed that soil organic carbon content was the most important factor regulating the pattern of microbial carbon utilization. Rhizodeposition and nutrient uptake by rice plants modulated microbial functions in paddy soils and stimulated the microbial use of N-rich substances, such as amino acids. Thus, our results demonstrated that the functional diversity of microorganisms in organic amended paddy soils is affected by both physicochemical properties of amendment and plant growth stage.

How to cite this publication

Hongzhao Yuan, Zhenke Zhu, Xiaomeng Wei, Shoulong Liu, Pei-Qin Peng, Anna Gunina, Jianlin Shen, Yakov Kuzyakov, Tida Ge, Jinshui Wu, Jiurong Wang (2019). Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils. Journal of Integrative Agriculture, 18(7), pp. 1474-1485, DOI: 10.1016/s2095-3119(18)62102-1.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Journal of Integrative Agriculture

DOI

10.1016/s2095-3119(18)62102-1

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration