0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Under natural conditions, animals repeatedly encounter the same visual scenes, objects or patterns repeatedly. These repetitions constitute statistical regularities, which the brain captures in an internal model through learning. A signature of such learning in primate visual areas V1 and V4 is the gradual strengthening of gamma synchronization. We used a V1-V4 Dynamic Causal Model (DCM) to explain visually induced responses in early and late epochs from a sequence of several hundred grating presentations. The DCM reproduced the empirical increase in local and inter-areal gamma synchronization, revealing specific intrinsic connectivity effects that could explain the phenomenon. In a sensitivity analysis, the isolated modulation of several connection strengths induced increased gamma. Comparison of alternative models showed that empirical gamma increases are better explained by (1) repetition effects in both V1 and V4 intrinsic connectivity (alone or together with extrinsic) than in extrinsic connectivity alone, and (2) repetition effects on V1 and V4 population input rather than output gain. The best input gain model included effects in V1 granular and superficial excitatory populations and in V4 granular and deep excitatory populations. Our findings are consistent with gamma reflecting bottom-up signal precision, which increases with repetition and, therefore, with predictability and learning. Highlights We model learning effects in macaque visual cortex using Dynamic Causal Modeling. Microcircuit-level changes explain the repetition-induced gamma increases. The best models include changes 1) within V1 and V4 and 2) in neuronal input gain. Gamma may reflect bottom-up signal precision.
Christini Katsanevaki, Conrado A. Bosman, Karl Friston, Pascal Fries (2024). Stimulus-repetition effects on macaque V1 and V4 microcircuits explain gamma-synchronization increase. , DOI: https://doi.org/10.1101/2024.12.06.627165.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/2024.12.06.627165
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access