0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPlants respond to cold stress by inducing the expression of transcription factors that regulate downstream genes to confer tolerance to freezing. We screened an Arabidopsis transfer DNA (T-DNA) insertion library and identified a cold-hypersensitive mutant, which we named stch4 (sensitive to chilling 4). STCH4/REIL2 encodes a ribosomal biogenesis factor that is upregulated upon cold stress. Overexpression of STCH4 confers chilling and freezing tolerance in Arabidopsis. The stch4 mutation reduces CBF protein levels and thus delayed the induction of C-repeat-binding factor (CBF) regulon genes. Ribosomal RNA processing is reduced in stch4 mutants, especially under cold stress. STCH4 associates with multiple ribosomal proteins, and these interactions are modulated by cold stress. These results suggest that the ribosome is a regulatory node for cold stress responses and that STCH4 promotes an altered ribosomal composition and functions in low temperatures to facilitate the translation of proteins important for plant growth and survival under cold stress.
Hasi Yu, Xiangfeng Kong, Huan Huang, Wenwu Wu, Junghoon Park, Dae‐Jin Yun, Byeong‐ha Lee, Huazhong Shi, Jian Kang Zhu (2020). STCH4/REIL2 Confers Cold Stress Tolerance in Arabidopsis by Promoting rRNA Processing and CBF Protein Translation. , 30(1), DOI: https://doi.org/10.1016/j.celrep.2019.12.012.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.celrep.2019.12.012
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access