0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRecent reports suggest that significant fractionation of stable metal isotopes occurs during biogeochemical cycling and that the uptake into higher plants is an important process. To test isotopic fractionation of copper (Cu) and zinc (Zn) during plant uptake and constrain its controls, we grew lettuce, tomato, rice and durum wheat under controlled conditions in nutrient solutions with variable metal speciation and iron (Fe) supply. The results show that the fractionation patterns of these two micronutrients are decoupled during the transport from nutrient solution to root. In roots, we found an enrichment of the heavier isotopes for Zn, in agreement with previous studies, but an enrichment of isotopically light Cu, suggesting a reduction of Cu(II) possibly at the surfaces of the root cell plasma membranes. This observation holds for both graminaceous and nongraminaceaous species and confirms that reduction is a predominant and ubiquitous mechanism for the acquisition of Cu into plants similar to the mechanism for the acquisition of iron (Fe) by the strategy I plant species. We propose two preliminary models of isotope fractionation processes of Cu and Zn in plants with different uptake strategies.
D. Jouvin, Dominik J. Weiß, Taylor Mason, Matthieu Bravin, Pascale Louvat, Fang-jie Zhao, F. Ferec, Philippe Hinsinger, Marc F. Benedetti (2012). Stable Isotopes of Cu and Zn in Higher Plants: Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Processes. Environmental Science & Technology, 46(5), pp. 2652-2660, DOI: 10.1021/es202587m.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/es202587m
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access