0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSpin-phonon coupling plays an important role in single-molecule magnets and molecular qubits. However, there have been few detailed studies of its nature. Here, we show for the first time distinct couplings of g phonons of CoII(acac)2(H2O)2 (acac = acetylacetonate) and its deuterated analogs with zero-field-split, excited magnetic/spin levels (Kramers doublet (KD)) of the S = 3/2 electronic ground state. The couplings are observed as avoided crossings in magnetic-field-dependent Raman spectra with coupling constants of 1-2 cm-1. Far-IR spectra reveal the magnetic-dipole-allowed, inter-KD transition, shifting to higher energy with increasing field. Density functional theory calculations are used to rationalize energies and symmetries of the phonons. A vibronic coupling model, supported by electronic structure calculations, is proposed to rationalize the behavior of the coupled Raman peaks. This work spectroscopically reveals and quantitates the spin-phonon couplings in typical transition metal complexes and sheds light on the origin of the spin-phonon entanglement.
Duncan H. Moseley, Shelby E. Stavretis, Komalavalli Thirunavukkuarasu, Mykhaylo Ozerov, Yongqiang Cheng, Luke L. Daemen, Jonathan Ludwig, Zhengguang Lu, Dmitry Smirnov, Craig M. Brown, Anup Pandey, Anibal J. Ramirez‐Cuesta, Adam C. Lamb, Mihail Atanasov, Eckhard Bill, Frank Neese, Zi‐Ling Xue (2018). Spin–phonon couplings in transition metal complexes with slow magnetic relaxation. Nature Communications, 9(1), DOI: 10.1038/s41467-018-04896-0.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
17
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/s41467-018-04896-0
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access