0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWetlands are one of the most critical components of an ecosystem, supporting many ecological niches and a rich diversity of flora and fauna. The ecological significance of these sites makes it imperative to study the changes in their inundation extent and propose necessary measures for their conservation. This study analyzes all 64 Ramsar sites in China based on their inundation patterns using Landsat imagery from 1991 to 2020. Annual composites were generated using the short-wave infrared thresholding technique from June to September to create inundation maps. The analysis was carried out on each Ramsar site individually to account for its typical behavior due to regional geographical and climatic conditions. The results of the inundation analysis for each site were subjected to the Mann-Kendall test to determine their trends. The analysis showed that 8 sites exhibited a significantly decreasing trend, while 14 sites displayed a significantly increasing trend. The accuracy of the analysis ranged from a minimum of 72.0% for Hubei Wang Lake to a maximum of 98.0% for Zhangye Heihe Wetland National Nature Reserve. The average overall accuracy of the sites was found to be 90.0%. The findings emphasize the necessity for conservation strategies and policies for Ramsar sites.
Manish Kumar Goyal, Shivukumar Rakkasagi, Soumya Shaga, Tian C. Zhang, Xianhui Li, Saket Dubey (2023). Spatiotemporal-based automated inundation mapping of Ramsar wetlands using Google Earth Engine. Scientific Reports, 13(1), DOI: 10.1038/s41598-023-43910-4.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/s41598-023-43910-4
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access