0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRoots increase microbial activities depending on exudate composition, especially on the ratios of sugars, carboxylic and amino acids, and thus structure enzyme activities in the rhizosphere. We introduce a new approach combining soil zymography and simulated exudates released from Rhizon® samplers to stimulate microbial activities but avoid the direct release of enzymes by living roots. This enabled visualizing, localizing and analyzing the effects of simulated root exudates on activity of five microbial enzymes involved in carbon (C) (β-glucosidase, cellobiohydrolase), nitrogen (N) (leucine aminopeptidase), phosphorus (P) (phosphatase) and sulfur (S) (sulfatase) cycles. We tested the hypotheses that 1) artificial exudates stimulate microorganisms for enzyme production and form spatial gradients around roots, and 2) the extent of microbial enzyme activities in the rhizosphere is component-specific. In line with these hypotheses, the activities of P-, N- and S-related enzymes were higher near the artificial root and gradually decreased as a function of distance from the root. The pattern for C-cycle enzymes was uniform and independent of the exudate composition. Among all components, alanine increased the rhizosphere extent much stronger than other substances, while methionine had no effect on the spatial distribution of enzyme activities. Vmax of all enzymes increased with alanine addition, but decreased after adding citrate. The ratios of enzyme activities demonstrated that rhizosphere microorganisms release more leucine aminopeptidase than other enzymes to meet their N demand. Glucose increased the Km of cellobiohydrolase and β-glucosidase, while alanine had the greatest effect on the Km of leucine aminopeptidase and sulfatase. Phosphatase is the enzyme most sensitive to the composition of root exudates; consequently, any factor influencing root exudate composition can strongly affect the P cycle. We conclude that the rhizosphere extent of microbial-derived enzyme activities is component- and enzyme-specific and that this extent depends on the substrate stoichiometry and microbial nutrient demand.
Xuechen Zhang, Michaela Dippold, Yakov Kuzyakov, Bahar S. Razavi (2019). Spatial pattern of enzyme activities depends on root exudate composition. Soil Biology and Biochemistry, 133, pp. 83-93, DOI: 10.1016/j.soilbio.2019.02.010.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2019.02.010
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access