0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract This work presents a comprehensive study on concentrations and elemental composition of total suspended atmospheric particulates for a semi-urban site on the Red Sea coast, and on-board a research vessel, which collected off-shore samples along the Red Sea. We conducted one of the most extended measurement campaigns of atmospheric particulates ever for the region, with continuous measurements over 27 months. The overall mean concentrations (± st. dev.) of TSP were 125 ± 197 µg m −3 for the permanent semi-urban site, and 108 ± 193 µg m −3 for the off-shore mobile site. The region is frequently severely impacted by both localised and widespread dust storms, which on occasion, can increase atmospheric particulate concentrations to levels above mg m −3 (> 1000 µg m −3 ). Median concentrations were not as variable between seasons, indicating a stable, permanent presence of atmospheric particulates independent of the time of year. The primary chemical elements contributing to particulate mass were Na, Ca, S, Al and Fe. We employed Positive Matrix Factorisation (EPA PMF v5.0.14) to identify different major sources of particulates, which were crustal, marine, fuel oil combustion/secondary sulphate and mixed anthropogenic. The crustal source was characterised by tracers Al, Fe, K, Mg and Sn, and was present to some extent in the other identified sources due to the permanent presence of dust particles in the atmosphere. The fuel oil combustion/secondary sulphate source was identifiable by the almost exclusive presence of S, and to a lesser extent V, emitted from oil combustion as primary emissions and also secondary sulphate formation following the release of S to the atmosphere. A mixed anthropogenic source was characterised by Zn, Ni, Cr, Cu and Pb, emitted from traffic, industry, power generation and water desalination. This study highlights that the natural sources of particulates in this desert region give rise to frequent episodes of extremely poor air quality, and this problem is compounded by significant emissions of anthropogenic pollution, which has an impact across the entire Red Sea basin. Further stringent measures should be adopted to improve air quality across the region and prevent long-term damage to the health of the local population and ecosystems.
Michael Cusack, Jesús M. Arrieta, Carlos M. Duarte (2020). Source Apportionment and Elemental Composition of Atmospheric Total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia. , 4(4), DOI: https://doi.org/10.1007/s41748-020-00189-z.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1007/s41748-020-00189-z
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access